segunda-feira, 15 de outubro de 2018

paradox Graceli.



If, without disturbing a physical system, or particle, or wave, it is impossible to predict with certainty and with no probability of truth of knowledge of phenomena, or energies, then, it becomes impossible the absolute knowledge of something infinite, infinite and incessant transformations .









Paradox of Einstein-Podolsky-Rosen or Paradox EPR:




If, without disturbing a physical system, it is possible to predict with certainty (that is, with probability equal to one) the value of a physical quantity, then there is an element of physical reality corresponding to that physical quantity.


paradoxo Graceli.

Se, sem perturbar um sistema físico, ou partícula, ou onda, é impossível de predizer com certeza e com nenhuma probabilidade de verdade de conhecimento de fenômenos, ou energias, pois, se torna impossível o conhecimento absoluto de algo ínfimo, infinito e transformações íncessantes.




Paradoxo de Einstein-Podolsky-Rosen ou Paradoxo EPR:

Se, sem perturbar um sistema físico, for possível predizer com certeza (isto é, com a probabilidade igual a um) o valor de uma quantidade física, então existe um elemento da realidade física correspondente a essa quantidade física.
Dirac e a teoria do elétron no sistema categorial Graceli.



[pTEMR1D] [pI] [PF] [pIT] [CG].

A teoria quântica, como criada nos anos 20 por Erwin Schrödinger e Werner Heisenberg, não era compatível com a Relatividade apresentada por Einstein desde 1905. A famosa equação de Schrödinger só se aplica a partículas com velocidades baixas comparadas com a velocidade da luz. Essa é uma grande limitação, pois os elétrons nos átomos e nos núcleos certamente não se conforma com essa restrição.
Em 1928, o inglês Paul Adrien Maurice Dirac, então com 26 anos, conseguiu com sucesso unir a teoria quântica à relatividade especial. Outros já tinham feito alguma coisa com esse objetivo mas o trabalho de Dirac foi definitivo e é considerado um dos feitos mais importantes da Física do século passado.Nesse trabalho, Dirac apresentou uma equação que substitui a equação de Schrödinger nos casos em que a partícula tem qualquer velocidade. Ela serve principalmente para descrever um elétron na presença de um campo eletromagnético. Sua forma é a seguinte:

Antes de Dirac apresentar sua equação outros físicos já haviam tentado juntar a relatividade `mecânica quântica. Entre eles, O. Klein e W. Gordon chegaram a uma equação onde simplesmente substituiam a energia total de uma partícula livre (E = p2/2m,) pelo equivalente relativístico (E2 = p2c2 + m2c4). O truque de Dirac foi fatorar a expressão relativística da energia antes de substituir pelos operadores correspondentes.O resultado disso foi que a função de onda  surge como um "quadrivetor", ou "spinor", na gíria mais moderna. Dessa forma, o elétron descrito por essa função de onda surge, naturalmente, com spin e tudo que tem direito, enquanto na formulação de Klein-Gordon o spin tem de ser acrescentado artificialmente.


Schrödinger e a Hipótese de de Broglie no sistema categorial Graceli.


EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

p it = potentials of interactions and transformations.
Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

h e = quantum index and speed of light.

[pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


EPG = GRACELI POTENTIAL STATUS.



, [pTEMR1D] [pI] [PF] [pIT] [CG].



 [pTEMR1D] [pI] [PF] [pIT] [CG].


Schrödinger e a Hipótese de de Broglie. .
A famosa Equação de Schrödinger, marco inicial da Mecânica Ondulatória, tem um gênese curiosa. Quando o físico francês, o Príncipe Louis Victor Pierre Raymond de Broglie (1892-1987; PNF, 1929) apresentou nos Comptes Rendus de l´Academie des Sciences de Paris 179, p. 39, em 1924, sua interpretação ondulatória da matéria: o elétron descreve uma "onda-piloto" em sua órbita Bohriana. Tal interpretação, a princípio, causou um certo ceticismo por parte dos físicos. Ao ler esse trabalho de de Broglie (que iniciou sua carreira acadêmica como estudante de História Medieval), o físico e químico holandês Petrus Joseph Wilhelm Debye [1884-1966; Prêmio Nobel de Química (PNQ), 1936] sugeriu ao físico austríaco Erwin Schrödinger (1887-1961; PNF, 1933) que este fizesse um seminário sobre as idéias do Príncipe francês. Imediatamente Schrödinger recusou, dizendo: Eu não quero falar sobre tal "nonsense". Porém, como Debye era o chefe do grupo de pesquisa, do qual participava Schrödinger, ele enfatizou que esse seminário era importante para a formação do referido grupo. Schrödinger, então, aceitou e prometeu apresentar as idéias de de Broglie em uma forma matemática mais compreensível. E assim o fez, propondo a hoje famosa Equação de Schrödinger:
onde H é o operador Hamiltoniano (soma das energias potencial e cinética), é a energia do elétron em uma órbita atômica estacionária e é a função de onda de Schrödinger. Porém, segundo Debye contou ao físico russo Piotr Leonidovich Kapitza (1884-1984; PNF, 1978), por ocasião da apresentação do seminário de Schrödinger sobre esse assunto, este não estava muito convicto da equação que estava propondo. Foi Debye, presente a esse seminário, quem disse a Schrödinger, ao termino de sua "lecture": Você fez um trabalho extraordinário.